
Creating an extrovert robotic assistant via IoT

networking devices

Panagiotis Doxopoulos,

Konstantinos L. Panayiotou,

Emmanouil G. Tsardoulias,

Andreas L. Symeonidis

School of Electrical and Computer Engineering
Aristotle University of Thessaloniki - AUTH

Thessaloniki 54124, Greece

Abstract—The communication and collaboration of Cyber-

Physical Systems, including machines and robots, among

themselves and with humans, is expected to attract researchers'

interest for the years to come. A key element of the new

revolution is the Internet of Things (IoT). IoT infrastructures

enable communication between different connected devices using

internet protocols. The integration of robots in an IoT platform

can improve robot capabilities by providing access to other

devices and resources. In this paper we present an IoT-enabled

application including a NAO robot which can communicate

through an IoT platform with a reflex measurement system and a

hardware node that provides robotics-oriented services in the

form of RESTful web services. An activity reminder application

is also included, illustrating the extension capabilities of the

system.

Keywords—Internet of Things, robotics, web services, IoT

platform, Swagger, REST, WAMP

I. INTRODUCTION

Internet of Things (IoT) is in a boosting period with recent

reports showing that by 2020 the connected devices will reach

the number of 50 billion [1]. Along with IoT, another

technological field that is expected to play a major role in

tomorrow’s society by helping peoples’ daily activities is

robotics [2]. In fact, robotic applications are developed in the

same domains as IoT technologies: industrial, smart city,

health-care and military are some of the most typical domains

[2], [3]. The coupling of these two technology fields could

offer additional capabilities, as an IoT platform could provide

the connected robots with access to smart devices or the

ability to use external web services. This way more

sophisticated applications may be designed and built.

Taking the above into consideration, this paper aspires to

demonstrate the advantages of the coupling of technologies.

Specifically, the paper presents a system where an IoT

platform is the central component that allows the interaction

between humans, robots, things and systems. A hardware node

providing robotic web services has been implemented and

connected to the platform. Moreover, the IoT platform

provides connection to a medical system that can accurately

measure reflexes.

In our application, we have used NAO, which is an

autonomous, programmable humanoid robot developed by

Aldebaran Robotics. It is probably the most widespread

humanoid robot, especially in the academic and scientific

fields. NAO has 25 degrees of freedom, offers connectivity

with Ethernet and WiFi, can be programmed with several

programming languages and has a significant number of

sensors and actuators.

II. ARCHITECTURE & IMPLEMENTATION

In this section, the application’s architecture is presented,

separately describing each component. Fig. 1 shows an

overview of the connected components to our platform. The

system consists of a router, a hardware node that provides

local or remote RESTful robotic web services (REST server),

a NAO robot following a specific architecture (R4A1) and a

system for measuring reflexes (REMEDES 2). Users can

directly interact with the robot and the REMEDES system.

Moreover, the platform allows clients, such as doctors, to

connect to the platform and get various measurements using

the pub/sub protocol.

A. Crossbar Router

An IoT platform is defined as the middleware and the

infrastructure that enables the end-users to interact with smart

objects [4]. Nowadays, there is an abundance of middleware

solutions. Each company develops its own platform, according

to the requirements and the needs of its customers.

Crossbar.io 3 is an open source networking platform for

distributed and microservice applications. It supports Web

Application Messaging Protocol 4 (WAMP) and REST

architectural styles5, through REST bridging. WAMP is an

open standard Web Socket subprotocol that is useful for IoT

applications, while REST defines a set of architectural

1 http://r4a.issel.ee.auth.gr
2 http://remedes.eu
3 https://crossbar.io/
4 http://wamp-proto.org/
5https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://r4a.issel.ee.auth.gr/
http://remedes.eu/
https://crossbar.io/
http://wamp-proto.org/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

principles by which Web services that focus on a system's

resources can be designed, including how resource states are

addressed and transferred over HTTP [5]. Communication is

accomplished using Remote Procedure Calls (RPCs) and

Publish/Subscribe (PubSub) protocols. Crossbar.io is an

advanced WAMP router made and supported by Crossbar.io

Gmbh (creators of WAMP).

Crossbar router is a core component of the system, as

every other component is connected to it, forming this way a

star network topology. For the needs of this paper, Crossbar.io

router was installed in a laptop’s python virtual environment.

Properly designing configuration files allows the

communication, REST or WAMP, between the connected

devices. Crossbar.io router can be fully configured from a

single configuration file in YAML format6.

B. RPI3 Hardware Node providing robotic web services

There is an abundance of embedded IoT devices,

nevertheless Raspberry Pi stands out because of several

factors like cost, power consumption, on-board connectivity

modules (WiFi and BLE), extended software support, and

more importantly a huge community and practitioners with

years of experience. R-PI is a credit card sized single board

computer weighting only 45g. Raspberry Pi 3 Model B has a

quad core 1.2GHz processor and 1GB program memory

(RAM). Therefore, it is low cost, powerful, it does not

consume a lot of power and it has Wi-Fi connectivity which

makes it perfect for integration to an IoT system. Several

applications have been performed using R-PI devices, ranging

from home automations [6] to monitoring electro-cardiogram

signals [7].

Regarding the web server implementation, we used the

most popular framework of developing RESTful APIs,

Swagger 7 . We preferred Swagger over RAML and API

Blueprint, since it has the largest and most active developer

community [8] and also provides useful tools for describing,

producing, consuming and visualizing web services. The most

important tools are Swagger Editor, Swagger Codegen and

Swagger UI, while OpenAPI specification is the definition

format and schema that describes the APIs. It is also important

to mention that Swagger can autogenerate Server and Client

6 http://yaml.org/
7 https://swagger.io/

code in a plethora of programming languages, thus no need for

manually developing these modules existed.

In our architecture, an RPI3 node hosts a server that was

designed and built following OpenAPI specification and by

using Swagger tools, server and client stubs were generated.

The server provides the ability to call robotic services via

REST over HTTP. The services are intended for use by robots

and are either locally installed (on Raspberry Pi) or are

invoked by proxy servers. RAPP8 services are installed locally

while proxy Mashape9, Algorihmia10 and Angus11services can

be called via the world-wide web. RAPP was an FP7 research

project, one of whose outcomes was a Cloud-based platform

which hosts robotic services, named RAPP Platform.

C. R4A Architecture

Fig. 2 The R4A architecture

A NAO robot was connected to the IoT platform. The

NAO robot’s middleware follows the R4A architecture

(created by R4A group) through which remote or non-remote

control of robot functions is provided. This architecture

consists of three levels (LLCA, HLCA and Web Server) as

shown in Fig.2. Low Level Core Agent (LLCA) is a

fundamental part of the R4A architecture comprising all the

necessary functionalities to expose the robot resources

(actuators and effectors). For utilization of robot resources,

this level includes all the necessary drivers and software. High

Level Core Agent (HLCA) directly interacts with the LLCA in

a robot-aware manner in order to expose hardware calls to the

outer world, while the Web Server (WS) module uptakes the

task of launching an in-robot server listening for requests. WS

module is auto-generated using the swagger-codegen tool12

8 http://rapp-project.eu/
9 https://www.mashape.com/
10 https://algorithmia.com/
11 https://www.angus.ai/
12 https://github.com/swagger-api/swagger-codegen

Fig. 1 Overview of system

http://yaml.org/
https://swagger.io/
http://rapp-project.eu/
https://www.mashape.com/
https://algorithmia.com/
https://www.angus.ai/
https://github.com/swagger-api/swagger-codegen

and allows synchronous, asynchronous and event-driven

communications. The NAO robot was mainly used as the

proxy between the system and the user in terms of

communication, but also as a humanoid entity the user can be

comfortable with, in comparison to a PC or tablet.

D. REMEDES system

The REMEDES system can accurately measure reflexes

and it is suitable for medical (e.g. diagnosis, neurokinetic) and

sports applications (e.g. modeling the reaction of athletes).

The architecture of REMEDES is depicted in fig. 3.

Each Pad consists of a Raspberry Pi 3 and a custom-made

PiHAT that incorporates four LEDs and a sonar sensor (fig.

4). It also has software controllers for controlling the LEDs

and the sonar (take measurements). In addition, each pad

provides REST web services, such as the activation service,

which triggers the pad by having the trigger time, color,

distance and more as parameters. As for the Master Controller,

it is the device that controls the Pads. In fact, this is another

Raspberry Pi 3 that features: (i) an API, the Pad Client, for

communicating with the Pads, (ii) a controller that uses the

API to handle the Pads, and (iii) a web server that provides a

web-based graphical user interface (GUI) through which the

controller functions can be called. Moreover, there is a cloud

infrastructure that backs-up all the data and allows users to

manage their accounts. The users can get a detailed report of

results using the front-end of the cloud platform (Cloud UI).

A standard REMEDES routine involves the sequential

activation of Pads providing either visual or audio stimuli,

where the user has to deactivate them by moving (usually)

their hand in a predefined distance from the Pad. Then, the

sonar sensor detects this motion, deactivates the Pad and the

Master controller activates the next Pad.

Fig. 3 The REMEDES system

Fig. 4 The REMEDES Pads

III. APPLICATION DESCRIPTION

A. Description

The aim of the developed application is to remind users

about their activities including the REMEDES exercise.

Useful data like date, time, activities and activities’ recursions

are stored in an SQL database (MySQL), thus being treated as

a calendar. The overall application consists of two smaller

apps that are executed independently of each other.

The first application (fig. 5) allows a user to store an

activity to the database. The user interacts with the robot in

order to provide information about each activity and its

timing. The robot records user’s answer and sends the sound

file to the application. Then, the audio file is sent through the

HW node to the RAPP service textToSpeech, which converts

audio to text. Next, the text (user’s answer) is sent to another

service through the HW node. The Reminders and Events

NLP Mashape service that extracts information, such as date,

time and activity, from the text is being used 13 . All the

necessary information is finally stored in the database.

The second application (Fig. 6) is executed repeatedly

aiming at informing the user of the time to perform an activity.

If the time and date of stored activities coincide with the real

time and date respectively, then the robot verbally informs the

user of which activity he/she must perform. Moreover, the

application gives the ability to perform REMEDES exercises.

If it’s time to execute the exercise, the robot informs the user

and the exercise starts automatically, initiated by the robot.

When the exercise is done, NAO retrieves the results and

informs the user about their achievements. Concurrently, the

router publishes the results to a topic using PubSub over

WAMP protocol. Doctors and other users can subscribe on the

same topic in order to retrieve the results.

B. Used endpoints

This section provides a brief description of the services that
were requested, using HTTP verbs, during the execution of the
application.

 POST NAO::Speak: The RAPP robot API provides
an interface to a speech synthesis module. We use this
API call to directly invoke speech synthesis in order
for NAO to speak.

 GET NAO::Record: Record user’s speech using
NAO microphones.

 POST RPi::SpeechRecognition: We use the RAPP
platform speech recognition service provided by the
HW node (RPi). Sending the audio file to the service
returns the words or phrases contained therein.

 POST RPi::Reminder: Mashape service to extract
useful information from a phrase. The service is
providing through the HW node and returns
information such as date, time and activity. If the
activity is repeated it also returns the recursion time.

 POST REMEDES::startExercise: Making a request
to REMEDES system with predetermined values so as
to start the exercise.

13 https://market.mashape.com/maciejgorny/reminders-and-events-nlp

https://market.mashape.com/maciejgorny/reminders-and-events-nlp

 GET REMEDES::getResults: REMEDES returns
the results of the exercise.

Fig. 5 Calendar Application: Storing activities to the database

Fig. 6 Reminder Application: Informs the user about an activity

C. Application example

For example, the user may want to get informed when it’s

time for his/her medicine or set a date to exercise with

REMEDES. The user dictates to NAO the phrases: “Remind

me to take the medicine every day after lunch. Furthermore,

remind me to practice REMEDES on Sundays nights”. The

used Mashape service returns the values: {year: 2017, month:

10, day: 18, hour: 14, minute: 0, body: take the medicine,

recurring: yes, repeat: DAYS, 1} and {year: 2017, month: 10,

day: 22, hour: 20, minute: 0, body: practice REMEDES,

recurring: yes, repeat: DAYS, 7}. Then, results are stored in

the database and when the time comes, the robot informs the

user by saying “Remember, you must take the medicine” or

“It’s time to practice REMEDES!”. Finally, the application

checks if the activity is recurring and adds a new entry to the

database with parameter “day” equal to “19” for the medicine

or “day” equal to “29” (next Sunday) for the REMEDES

system. Then the process is repeated.

IV. CONCLUTION & FUTURE WORK

In this paper, we have presented a system that combines

the fields of Robotics, Internet of Things and Cloud Robotics.

The implantation of an IoT platform enabled communication

between connected devices, provides the NAO robot with

many additional capabilities, as well as indirectly linking the

robot to the implemented HW node allows it to remotely use

RESTful services. Connecting the REMEDES system to the

IoT platform allowed the rest of the system entities to start the

exercise and get the results remotely. Finally, creating an

activity reminder application enabled us to exploit the

capabilities of our system by interconnecting all the available

“Things”. As future work, the developed system can be

expanded by enriching it with additional devices, sensors and

actuators, as well as test its acceptance with real elders.

REFERENCES

[1] Ericsson, L. "More than 50 billion connected devices." White
Paper (2011).

[2] Grieco, Luigi Alfredo, Alessandro Rizzo, Simona Colucci, Sabrina
Sicari, Giuseppe Piro, Donato Di Paola, and Gennaro Boggia. "IoT-
aided robotics applications: Technological implications, target domains
and open issues." Computer Communications 54 (2014): 32-47.

[3] Borgia, Eleonora. "The Internet of Things vision: Key features,
applications and open issues." Computer Communications 54 (2014): 1-
31.

[4] Mineraud, Julien, Oleksiy Mazhelis, Xiang Su, and Sasu Tarkoma. "A
gap analysis of Internet-of-Things platforms." Computer
Communications 89 (2016): 5-16.

[5] Rodriguez, Alex. "Restful web services: The basics." IBM
developerWorks (2008)

[6] Vujović, Vladimir, and Mirjana Maksimović. "Raspberry Pi as a Sensor
Web node for home automation." Computers & Electrical Engineering
44 (2015): 153-171.

[7] Gupta, M. Surya Deekshith, Vamsikrishna Patchava, and Virginia
Menezes. "Healthcare based on IoT using Raspberry Pi." In Green
Computing and Internet of Things (ICGCIoT), 2015 International
Conference on, pp. 796-799. IEEE, 2015.

[8] Surwase, Vijay. "REST API Modeling Languages-A Developer's
Perspective." IJSTE-International Journal of Science Technology &
Engineering 2, no. 10 (2016): 634-637.

