
SRCA - The Scalable Robotic Cloud Agents

Architecture

Vasilis N. Remmas,

Konstantinos L. Panayiotou,

Emmanouil G. Tsardoulias,

Andreas L. Symeonidis

School of Electrical and Computer Engineering
Aristotle University of Thessaloniki - AUTH

Thessaloniki 5414, Greece

Abstract— In an effort to penetrate the market at an affordable

cost, consumer robots tend to provide limited processing

capabilities, just enough to serve the purpose they have been

designed for. However, a robot, in principle, should be able to

interact and process the constantly increasing information streams

generated from sensors or other devices. This would require the

implementation of algorithms and mathematical models for the

accurate processing of data volumes and significant computational

resources. It is clear that as the data deluge continues to grow

exponentially, deploying such algorithms on consumer robots will

not be easy. Current work presents a cloud-based architecture that

aims to offload computational resources from robots to a remote

infrastructure, by utilizing and implementing cloud technologies.

This way robots are allowed to enjoy functionality offered by

complex algorithms that are executed on the cloud. The proposed

system architecture allows developers and engineers not

specialised in robotic implementation environments to utilize

generic robotic algorithms and services off-the-shelf.

Keywords—robotics, cloud architectures, cloud robotics, robotic

applications

I. INTRODUCTION

 Robotics is currently one of the most rapidly evolving
domains: logistics applications, the automotive industry,
factories, or even homes appliances incorporate robotics. Many
researchers work towards equipping robots with intelligence,
this way serving advanced functionality. However, intelligence
in everyday applications is limited, due to the accompanying
high costs of the required computational resources. Face, object,
voice, and speech recognition, simultaneous localization and
mapping (SLAM), navigation, path planning, and kinematic
solvers are some of the typical cases where intelligence is
needed.

 Apart from the algorithm efficiency (error metrics),
execution time and power consumption are also taken into
account in order to decide if they can be used in a real system or
not. Several algorithms which are executed in-robot require high
power consumption that consumer robots not have, due to
hardware limitations of their embedded computational
resources, when compared to conventional desktop computers.
Especially in cases where the robot is autonomous (relies on
batteries as energy source), power consumption plays a critical
role as it affects the maximum time of operation. Furthermore,
as the amount of acquired data increases, both computational

and power requirements of the algorithms increase. For
example, current cameras provide higher resolutions than the
past, resulting in larger image sizes and therefore in heavier
image processing.

 Based on the aforementioned concerns, infrastructures are
being designed to virtually increase the available resources, even
in cases of low cost robots. Nowadays, researchers use the cloud
to provide Software-as-a-Service (SaaS) and Platform-as-a-
Service (PaaS) solutions, allowing users to avoid large
investment in hardware resources. This constitutes the largest
advantage of cloud infrastructures, as they can provide huge
amounts of processing power at low costs. As far as robots are
concerned, they could easily offload and execute on the cloud
algorithms that are not time critical, fact that would extend the
robot operation time, as well as its overall AI capabilities.

 The aim of the proposed SRCA architecture is to introduce a
framework where researchers and engineers can submit, build
and deploy robotic-oriented services on the cloud. This way,
non-time-critical algorithms that are now executed in-robot can
be offloaded in a cloud environment lifting computational power
barriers, and enabling the extensibility of robotic functionality,
regardless of the actual embedded platform(s) at hand. The
SRCA architecture is the extension of the Cloud Agents
architecture, presented in [1].

The paper is structured as follows. Chapter 2 contains
information on existing architectures which aspire to solve the
problem of offloading computational intensive algorithms from
robot platforms to cloud infrastructures. In chapter 3 the SRCA
architecture is presented, along with adopted technologies and
tools. Submission, build, deployment and utilization procedures
are also described in this chapter. Thereafter, chapter 4 presents
the results of several experiments performed towards measuring
and evaluating the performance and scalability of the system.
Finally, in chapter 5 future work is described, oriented towards
improved performance and Quality of Service.

II. STATE OF THE ART

 Robot manufacturers and distributors focus on reducing the
cost of robots, resulting in limited capabilities. This leads to the
development of new product versions in order to integrate new
functionality, which otherwise could be simply updated,
provided the correct software. The scientific community
envisioned means to simplify the ways to update or enhance

robots features. Platforms have been created through which a
specific robot can download a program or an application and
seamlessly execute it, two examples of which are RAPP [2][3]
and RoboEarth [4], promoting the cloud-based robotics concept.
Both RAPP and RoboEarth use the ROS [5] meta-operating
system for implementing robotic controllers, in order to support
the execution and offloading of robotic computations to the
cloud, without the need of heavy modifications in already
existing controller implementations.

The RAPP Framework was created within the context of
RAPP Project (FP7-ICT-610947) and consists of two main tiers.
The first concerns the software that should exist in the robot, so
that it is considered RAPP-ready. The second part concerns the
software executed on the cloud, denoted as RAPP Platform [3].
The services provided by the RAPP Platform are robotics-
oriented and are utilized by RAPP applications by invoking API
calls. Such services may include facial and object recognition,
speech synthesis and speech recognition tasks, among others.
Each RAPP developer can also create such a service and deploy
it on the cloud. RAPP Platform provides services for the
submission and deployment of Cloud Agents as well [1]. There,
a Docker container for each service [6] is created, all the
necessary dependencies are installed according to the input
parameters provided by the developer and finally the container
is deployed. Ultimately, and upon successful submission, Cloud
Agent services are being forwarded out of the container and
exposed via a web server, over HTTP1.1 protocol. The RAPP
Cloud Agents architecture has several particularities. First of all,
services are provided via HTTP POST requests at a web server
that uses TCP-Sockets or ROS-websockets to communicate with
the container that owns that specific Cloud Agent package. It is
worth noting that there is one web server to serve all services.
Also, the robot has to send a request to the platform in order to
create and deploy the container which offers a new service.

Another interesting cloud robotics platform is Rapyuta, the
core implementation of the RoboEarth project [7]. It contains
three communication layers, a set of tasks, as well as a set of
commands by which the user can manage the system. Services
can be used not only by robotic devices, since the service calls
are based on standard HTTP requests. This makes it even easier

for developers to use it, as calling services is analogous to
invoking simple functions. Finally, services can be utilized via
C++ or Python API client libraries, provided by the framework.

An alternative approach that has been developed to solve the
problem of offloading computational resources to the cloud is
Cloudroid [8]. It uses Docker containers and Docker Swarm for
their orchestration. In addition, it uses ROSBridge web sockets
for exposing ROS resources to the world-wide web, in order for
robots to invoke services by using the auto-generated stubs
Cloudroid provides. A remarkable feature of this system is the
implemented Quality of Service mechanisms, which improve
the speed and the reliability of the overall framework.
Nevertheless, even though SCRA and Cloudroid are similar,
SCRA is built on Kubernetes instead of Docker Swarm, supports
ROS and non-ROS code, and provides a range of client libraries
in terms of programming languages instead of just WebSockets.

The aforementioned architectures differ from the proposed
system architecture in several parts. First of all, the SRCA
system utilizes one web server for each container and a reverse
proxy server, in order to allow communication between the
service and the robot. This way, each package that exposes one
or more services is isolated. Furthermore, the robot or the robotic
developer is not involved in the process of creating the
appropriate environment that a service may require, but just calls
a specific service using the generated API clients. The user is
responsible to fully define the service at the provided SRCA UI.
Finally, it uses Kubernetes [9] as container orchestration
framework which is similar to Docker Swarm. A more detailed
explanation of the architecture is described in the next section.

III. SRCA ARCHITECTURE

 The system consists of three distinct interconnected layers
(Figure 1). The first concerns Kubernetes, responsible for the
management and orchestration of the Docker containers.
Kubernetes uses one node of the cluster as a Master Node,
uptaking the task of directly communicating with the other
nodes towards task allocation and assignment. Each node can
host different robotic services assigned by the Master Node. The
computational resources each service is allowed to use are also
set by the Master Node. This implies modularity and scalability

Figure 1: Architecture of the SRCA system

of the system and at the same time allows for full-range
monitoring (nodes, pods, clusters, physical resources etc.).

The second layer concerns the automated build and
deployment procedures of ROS packages. This is the most
important part of the system since it is responsible for the
orchestration of all subsystems and also for the task allocation
and assignment. It is implemented in NodeJS and integrates a
web server (HTTP protocol), a reverse proxy server and a
NoSQL database (MongoDB [10]), which are installed in the
Master Node mentioned before. The web server utilizes Docker,
Kubernetes and MongoDB APIs. The reversed proxy server is
used in order to publicly expose the deployed services, making
them accessible by the robots or software. Also, a web-based UI
is implemented in this layer, enabling interactions between users
and the cloud infrastructure. At this layer, the programming
environment in which the ROS package needs to get built and
executed is automatically created. Also, the uploaded by the user
package is parsed, in order to confirm that it fulfils the necessary
specifications. Furthermore, an automatically generated
communication medium (an API client library) is created for
each ROS package using Swagger tools, thus conforming to
OpenAPI Specifications (OAS). Swagger gives the opportunity
to generate the necessary files that an API client consists of.
OAS defines a standard, programming language-agnostic
interface description for REST APIs. This client library can be
embedded into either a robot controller or an application and
utilize the deployed cloud services.

 The last layer of the system is the client layer. It involves the
users, the robots and the software that utilize the system’s
features. Through the UI, users can upload ROS packages, adjust
the computing resources to be used for each one (scaling), track
the status of both building and deployment procedures, as well
as have access to runtime logs. Also, one can search and find
deployed ROS packages, retrieving necessary information about
how to call the services each one contains. Finally, robots or
software can use the generated API client libraries that the
system provides or by employ third-party tools like cURL, in
order to call already deployed services.

The main concept is that a developer can upload a ROS
package accompanied by a configuration file. This file contains
information about the automatic build and deployment of the
ROS package in an isolated containerized environment existing
on the cluster. It is worth mentioning that the system does not
support pre-compiled Docker containers, since auto-generated
files that should be included in the same container are involved.
Upon successful deployment, proper URLs are automatically
generated, via which any authorized user can make HTTP calls
in order to use a specific service of this package. Also, an
OpenAPI specifications file is generated along with API client
libraries towards invocation from a range of programming
languages like C++, Python and JavaScript. The programmer
can manage his/her deployed services through the SRCA UI in
order to scale it up or down (assign or remove deployed
containers), review the logs relevant to the build and/or
deployment procedures and retrieve further information about
the deployment (e.g. the version of the package).

A more detailed explanation about how the system operates
follows. Initially, the user uploads a ROS package along with a

configuration file, written in YAML format. Figure 2 presents
an example of a YAML file used to automatically build and
deploy a ROS package named test, comprising two different
functions defined in two different files.

 This YAML file contains critical parameters, used to
automatically build and deploy the ROS package. Τhe
definitions and roles of the main ones follow:

 file: a source code file containing one or more
functions. The user has to create and provide these files
and place them in a folder named functions in the ROS
package directory. The files can only be developed in
Python, as it’s currently the only supported language.
Their structure can be really simple like the script
presented at Figure 3.

 function: a function the user must create in order to
invoke one or more ROS services and get the returned
value through the web server.

 package: can contain apt-get, pip and npm commands,
i.e. package managers used to download and install
specific packages, followed by the name of the
software the ROS package requires to get properly built
and executed.

 command: the appropriate command that will launch
ROS Core and the necessary ROS nodes for the
package to serve the contained services. This is the one
and only command that the container will run at
execution time.

name: test
version: v1
environment: ROS
files:
- file_name: client.py
 functions:
 - name: add_two_ints
 arguments:
 params:
 a: integer
 b: integer
 http-method: post
 returns: string
- file_name: testfiles.py
 functions:
 - name: sendmyfile
 arguments:
 files:
 fa:
 params:
 a: integer
 http-method: post

returns: file
packages:
 apt-get: net-tools vim
 pip: numpy
 npm: underscore
command: roslaunch test launch.launch

Figure 2: Example of YAML file used to build and deploy package at

SRCA

 Upon uploading the aforementioned files in a ZIP file, the
developer waits until the functions are deployed. Meanwhile, the
system performs the activities presented in Figure 5. Initially, it
performs appropriate validation checks concerning the file's

existence and the configuration file structure and schema. The
next step is to generate a Docker file that will be used to build
the ROS package, along with some configuration files needed to
get everything operating correctly inside the container. Also, a
Web Server Gateway Interface (WSGI) is generated in which
the above functions are binded. The system uses a Gunicorn web
server to host and run this WSGI application combined with
three Eventlet workers, aiming at supporting more concurrent
HTTP requests. This web server is running inside every single
container and it is different for each package, thus a mechanism
to bind internal to external ports will be needed (e.g. a reverse
proxy). In order to achieve faster and parallel building of
packages, the system supports building these images at different
Kubernetes Pods.

After the successful completion of the build process, the
system creates a Kubernetes Deployment which undertakes the
deployment of this container at the Cluster, identified by
username. In order to achieve that, Kubernetes Namespaces are
used to craft a proper namespace for every different user of the
system, making it easier to debug errors. Next, a Kubernetes

#!/usr/bin/env python
import sys
import rospy
from test.srv import *
def add_two_ints(x, y):
 rospy.wait_for_service('add_two_ints_srv')
 try:
 add_two_ints_srv =
rospy.ServiceProxy('add_two_ints_srv',
AddTwoInts)
 resp1 = add_two_ints_srv(x, y)
 return resp1.sum
 except rospy.ServiceException, e:

print "Service call failed: %s"%e

Figure 3: Structure of a Python script containing one function

Figure 4: The path which an HTTP Request follows at SRCA

Figure 5: Flow chart of automatic build and deployment procedures

Service is created and is used to forward the port of the Gunicorn
Web Server existing in the container. This port is available only
to entities belonging in the same network as the Master Node. A
reverse proxy server has been integrated, in order to dynamically
create routes that connect an internal port like the one exposed
by the Kubernetes Service with an external user-friendly URL.
This reverse proxy server is again a custom implementation
using the NodeJS web server framework. The route that an
HTTP request follows in the SRCA is presented in Figure 4.

 During this procedure, the database is getting updated in
order to store the status of this process. This NoSQL database
consists of four collections, responsible for storing I)
information about the users, II) the deployments created by the
users (including the services that the specific package contains),
III) the devices that they own and IV) user groups with different
permissions (e.g. number of pods that are allowed to use for a
specific deployment).

Finally, the system cleans up any useless Docker images and
Kubernetes Pods that have been created and informs the user that
the functions are ready for utilization. The user can then modify
this Deployment through the aforementioned SRCA UI.

IV. EXPERIMENTS ON SYSTEM PERFORMANCE

 The system was tested using a Cluster of three (3) Nodes.
Each Node has 4GB RAM, 40GB HDD and 1 CPU core.
Kubernetes and Docker were installed in each, in order to create
a Kubernetes Cluster. Also, an instance of MongoDB was
installed at the Master Node along with the NodeJS web server
described in the previous chapter. The experiments include a
ROS package that has only one function named add_two_ints().
This function takes as input arguments two numerical values and
returns the sum of them. We concluded in using this function at
the experiments, due to the fact that it is not a computationally
intensive operation. In this way, we have measured the
performance and the response time of the system, instead of the

computational power of the current cluster’s resources. The
reader should take into account that Kubernetes Nodes may be
similar to a standard PC regarding the computational power, thus
we expect that a multi-node ROS package will behave the same
in both configurations. Different experiments we conducted are
for 1-3 Pods and 1-3 eventlet workers for 500 simultaneously
HTTP requests using cURL. Below, a list containing the metrics,
as defined by cURL, is presented:

 time_connect: The time, in seconds, from the start
until the TCP connect to the remote host (or proxy) was
completed.

 time_pretransfer: The time, in seconds, from the start
until the file transfer was just about to begin. This
includes all pre-transfer commands and negotiations
that are specific to the particular protocol(s) involved.

 time_start_transfer: The time, in seconds, from the
start until the first byte was just about to be transferred.
This includes time_pretransfer and also the time the
server needed to calculate the result.

 time_total: The total time, in seconds, that the full
operation lasted.

 total_start_transfer: Time difference between
time_total and time_start_transfer.

 The diagrams in Figure 6 depict the differences between 1-3
Pods and 3 worker processes. The results presented in Table I
conclude that as the number of Pods increases, the mean time
difference between time_total and time_start_transfer
decreases. This means that the server can serve faster and
smoother concurrent requests. Furthermore, the same
experiments have been performed for a variable number of
worker processes (1-3) and the results are presented in Table II.
It is noticeable that there are combinations with less computer
resources that perform better. e.g. using 2 Pods and 1 worker

Figure 6: System performance for 500 concurrent requests

performs better than using 2 Pods and 2-3 workers. This may
occur due to the fact that the specific cluster is not powerful
enough to assign without delay the requests which arrive at the
web server to the specific workers.

It is worth mentioning that the maximum number of worker
processes for each web server was equal to three, as it has been
experimentally noticed that it is optimized for the specific setup
of the cluster. However, a feature could be added in the future
which will enable the user to change that number.

TABLE I. TIMES FOR 3 WORKERS AND 500 REQUESTS

of

Pods

Average Time

connect pre

transfer start_transfer total total -

start_transfer
1 1.03618 1.03636 1.43266 3.46107 2.02840

2 1.20848 1.20860 1.54866 3.50012 1.95146

3 1.17671 1.17688 1.51506 2.32103 0.80597

TABLE II. TIME COMPARISON BETWEEN DIFFERENT WORKERS FOR

500 REQUESTS

of Pods
Average Time Difference Between total and start_transfer

1 worker 2 workers 3 workers

1 2.88665 2.65352 2.02840

2 1.72741 2.59609 1.95146

3 1.43738 1.58541 0.80597

V. CONCLUSION / FUTURE WORK

 The proposed SRCA architecture is based on modern and
state-of-the-art technologies and tools, which evidently have
large potentials to evolve and mitigate in common everyday
procedures. SRCA is an architecture that promotes the Cloud
Robotics concept, by allowing robotic experts to offer services
for deployment by simple users or robots, in a structured and
scalable way.

Currently, Kubernetes can handle 5,000 nodes and 150,000
pods, which makes SRCA extremely scalable. Also, using
Kubernetes allows the proposed architecture to be deployed in
physical cloud infrastructures like the one used for the
experiments. In addition, using containers the way described
above and decoupling the main components of the system
achieve low granularity of the architecture. This makes the
system perform smoother its operations and be more reliable.
Furthermore, it should be clearly stated that the proposed system
(as well as any other cloud-based service providing system)
cannot be used for time critical operations. This means that a Pod
cannot handle real time motion control or visual assisted
manipulation, but functions the robot has the luxury to wait for
their conclusion, since their response time cannot be known due
to network delays. Several improvements can be performed as
future work, in order to provide better Quality of Service and
extended functionalities.

First of all, the system should be benchmarked with realistic
(for robotics) services such as 2D/3D path planning, object

detection/recognition, human skeleton detection and others.
Furthermore, ROS uses streams over TCP sockets to allow
communication between nodes (TCPROS). There are many
cases where a user/robot needs to stream data to services (and
not just call them once), thus maintaining an open channel of
communication. This can be achieved through several protocols
over TCP like websockets, MQTT, WAMP, or any other
bidirectional network channel. Nevertheless, all the tools used to
implement SRCA intra-layer communication interfaces support
TCP sockets, thus the implementation of this feature does not
require architecturally redesign the system.

Furthermore, upon code submission from a developer, the
system creates a Docker image containing the entire package.
This image is deployed on some Pods, but no communication
means exists between them, thus each Pod executes the entire
package separately. Nevertheless, ROS architecture allows the
creation of more than one ROS nodes, which can communicate
with each other. One can take advantage of Kubernetes' ability
to create networks of Pods that can communicate with each
other, resulting in the easier scaling of ROS Nodes with large
workload, instead of scaling the entire package.

Finally, a registry is used to store the Docker images, which
are currently being exploited only during their deployment
process. The implementation of a subsystem to enable
reusability of existing images would be a useful addition,
especially for saving deployment time. This could considerably
shorten the building time of a new image, in case it has similar
specifications to another that already exists in the registry.

REFERENCES

[1] Thallas, A. G., Panayiotou, K., Tsardoulias, E., Symeonidis, A. L.,
Mitkas, P. A., & Karagiannis, G. G. (2016). Relieving Robots from Their
Burdens: The Cloud Agent Concept (Short Paper). In Proceedings - 2016
5th IEEE International Conference on Cloud Networking, CloudNet 2016
(pp. 188–191).

[2] Zieliński, C., Stefańczyk, M., Kornuta, T., Figat, M., Dudek, W.,
Szynkiewicz, W., … Iturburu, M. (2017). Variable structure robot control
systems: The RAPP approach. Robotics and Autonomous Systems, 94,
226–244.

[3] Tsardoulias, E. G., Kintsakis, A. M., Panayiotou, K., Thallas, A. G.,
Reppou, S. E., Karagiannis, G. G., … Mitkas, P. A. (2017). Towards an
integrated robotics architecture for social inclusion – The RAPP
paradigm. Cognitive Systems Research, 43, 157–173.

[4] Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-
Lopez, D., … Van de Molengraft, R. (2011). RoboEarth: A World Wide
Web for Robots. Robotics and Automation Magazine, 18(2), 69–82.

[5] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., … Mg,
A. (2009). ROS: an open-source Robot Operating System. Icra, 3(Figure
1), 5.

[6] Merkel, D. (2014). Docker: lightweight Linux containers for consistent
development and deployment. Linux Journal.

[7] Hunziker, D., Gajamohan, M., Waibel, M., & D’Andrea, R. (2013).
Rapyuta: The RoboEarth cloud engine. In Proceedings - IEEE
International Conference on Robotics and Automation (pp. 438–444).

[8] Ben Hu, Huaimin Wang, Pengfei Zhang, Bo Ding, Huimin Che (2017).
Cloudroid: A Cloud Framework for Transparent and QoS-aware Robotic
Computation Outsourcing.

[9] Brewer, E. A. (2015). Kubernetes and the Path to Cloud Native.
Proceedings of the Sixth ACM Symposium on Cloud Computing, 167.

[10] MongoDB. (2016). MongoDB Architecture Guide. MongoDB White
Paper, 1–16.

