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Abstract— In an effort to penetrate the market at an affordable 

cost, consumer robots tend to provide limited processing 

capabilities, just enough to serve the purpose they have been 

designed for. However, a robot, in principle, should be able to 

interact and process the constantly increasing information streams 

generated from sensors or other devices. This would require the 

implementation of algorithms and mathematical models for the 

accurate processing of data volumes and significant computational 

resources. It is clear that as the data deluge continues to grow 

exponentially, deploying such algorithms on consumer robots will 

not be easy. Current work presents a cloud-based architecture that 

aims to offload computational resources from robots to a remote 

infrastructure, by utilizing and implementing cloud technologies. 

This way robots are allowed to enjoy functionality offered by 

complex algorithms that are executed on the cloud. The proposed 

system architecture allows developers and engineers not 

specialised in robotic implementation environments to utilize 

generic robotic algorithms and services off-the-shelf. 

Keywords—robotics, cloud architectures, cloud robotics, robotic 

applications 

I.  INTRODUCTION 

 Robotics is currently one of the most rapidly evolving 
domains: logistics applications, the automotive industry, 
factories, or even homes appliances incorporate robotics. Many 
researchers work towards equipping robots with intelligence, 
this way serving advanced functionality. However, intelligence 
in everyday applications is limited, due to the accompanying 
high costs of the required computational resources. Face, object, 
voice, and speech recognition, simultaneous localization and 
mapping (SLAM), navigation, path planning, and kinematic 
solvers are some of the typical cases where intelligence is 
needed.  

 Apart from the algorithm efficiency (error metrics), 
execution time and power consumption are also taken into 
account in order to decide if they can be used in a real system or 
not. Several algorithms which are executed in-robot require high 
power consumption that consumer robots not have, due to 
hardware limitations of their embedded computational 
resources, when compared to conventional desktop computers. 
Especially in cases where the robot is autonomous (relies on 
batteries as energy source), power consumption plays a critical 
role as it affects the maximum time of operation. Furthermore, 
as the amount of acquired data increases, both computational 

and power requirements of the algorithms increase. For 
example, current cameras provide higher resolutions than the 
past, resulting in larger image sizes and therefore in heavier 
image processing. 

 Based on the aforementioned concerns, infrastructures are 
being designed to virtually increase the available resources, even 
in cases of low cost robots. Nowadays, researchers use the cloud 
to provide Software-as-a-Service (SaaS) and Platform-as-a-
Service (PaaS) solutions, allowing users to avoid large 
investment in hardware resources. This constitutes the largest 
advantage of cloud infrastructures, as they can provide huge 
amounts of processing power at low costs. As far as robots are 
concerned, they could easily offload and execute on the cloud 
algorithms that are not time critical, fact that would extend the 
robot operation time, as well as its overall AI capabilities. 

 The aim of the proposed SRCA architecture is to introduce a 
framework where researchers and engineers can submit, build 
and deploy robotic-oriented services on the cloud. This way, 
non-time-critical algorithms that are now executed in-robot can 
be offloaded in a cloud environment lifting computational power 
barriers, and enabling the extensibility of robotic functionality, 
regardless of the actual embedded platform(s) at hand. The 
SRCA architecture is the extension of the Cloud Agents 
architecture, presented in [1]. 

The paper is structured as follows. Chapter 2 contains 
information on existing architectures which aspire to solve the 
problem of offloading computational intensive algorithms from 
robot platforms to cloud infrastructures. In chapter 3 the SRCA 
architecture is presented, along with adopted technologies and 
tools. Submission, build, deployment and utilization procedures 
are also described in this chapter. Thereafter, chapter 4 presents 
the results of several experiments performed towards measuring 
and evaluating the performance and scalability of the system. 
Finally, in chapter 5 future work is described, oriented towards 
improved performance and Quality of Service. 

II. STATE OF THE ART 

 Robot manufacturers and distributors focus on reducing the 
cost of robots, resulting in limited capabilities. This leads to the 
development of new product versions in order to integrate new 
functionality, which otherwise could be simply updated, 
provided the correct software. The scientific community 
envisioned means to simplify the ways to update or enhance 



robots features. Platforms have been created through which a 
specific robot can download a program or an application and 
seamlessly execute it, two examples of which are RAPP [2][3] 
and RoboEarth [4], promoting the cloud-based robotics concept. 
Both RAPP and RoboEarth use the ROS [5] meta-operating 
system for implementing robotic controllers, in order to support 
the execution and offloading of robotic computations to the 
cloud, without the need of heavy modifications in already 
existing controller implementations. 

The RAPP Framework was created within the context of 
RAPP Project (FP7-ICT-610947) and consists of two main tiers. 
The first concerns the software that should exist in the robot, so 
that it is considered RAPP-ready. The second part concerns the 
software executed on the cloud, denoted as RAPP Platform [3]. 
The services provided by the RAPP Platform are robotics-
oriented and are utilized by RAPP applications by invoking API 
calls. Such services may include facial and object recognition, 
speech synthesis and speech recognition tasks, among others. 
Each RAPP developer can also create such a service and deploy 
it on the cloud. RAPP Platform provides services for the 
submission and deployment of Cloud Agents as well [1]. There, 
a Docker container for each service [6] is created, all the 
necessary dependencies are installed according to the input 
parameters provided by the developer and finally the container 
is deployed. Ultimately, and upon successful submission, Cloud 
Agent services are being forwarded out of the container and 
exposed via a web server, over HTTP1.1 protocol. The RAPP 
Cloud Agents architecture has several particularities. First of all, 
services are provided via HTTP POST requests at a web server 
that uses TCP-Sockets or ROS-websockets to communicate with 
the container that owns that specific Cloud Agent package. It is 
worth noting that there is one web server to serve all services. 
Also, the robot has to send a request to the platform in order to 
create and deploy the container which offers a new service. 

Another interesting cloud robotics platform is Rapyuta, the 
core implementation of the RoboEarth project [7]. It contains 
three communication layers, a set of tasks, as well as a set of 
commands by which the user can manage the system. Services 
can be used not only by robotic devices, since the service calls 
are based on standard HTTP requests. This makes it even easier 

for developers to use it, as calling services is analogous to 
invoking simple functions. Finally, services can be utilized via 
C++ or Python API client libraries, provided by the framework. 

An alternative approach that has been developed to solve the 
problem of offloading computational resources to the cloud is 
Cloudroid [8]. It uses Docker containers and Docker Swarm for 
their orchestration. In addition, it uses ROSBridge web sockets 
for exposing ROS resources to the world-wide web, in order for 
robots to invoke services by using the auto-generated stubs 
Cloudroid provides. A remarkable feature of this system is the 
implemented Quality of Service mechanisms, which improve 
the speed and the reliability of the overall framework. 
Nevertheless, even though SCRA and Cloudroid are similar, 
SCRA is built on Kubernetes instead of Docker Swarm, supports 
ROS and non-ROS code, and provides a range of client libraries 
in terms of programming languages instead of just WebSockets. 

The aforementioned architectures differ from the proposed 
system architecture in several parts. First of all, the SRCA 
system utilizes one web server for each container and a reverse 
proxy server, in order to allow communication between the 
service and the robot. This way, each package that exposes one 
or more services is isolated. Furthermore, the robot or the robotic 
developer is not involved in the process of creating the 
appropriate environment that a service may require, but just calls 
a specific service using the generated API clients. The user is 
responsible to fully define the service at the provided SRCA UI. 
Finally, it uses Kubernetes [9] as container orchestration 
framework which is similar to Docker Swarm. A more detailed 
explanation of the architecture is described in the next section. 

III. SRCA ARCHITECTURE 

 The system consists of three distinct interconnected layers 
(Figure 1). The first concerns Kubernetes, responsible for the 
management and orchestration of the Docker containers. 
Kubernetes uses one node of the cluster as a Master Node, 
uptaking the task of directly communicating with the other 
nodes towards task allocation and assignment. Each node can 
host different robotic services assigned by the Master Node. The 
computational resources each service is allowed to use are also 
set by the Master Node. This implies modularity and scalability 

 

Figure 1: Architecture of the SRCA system 

 



of the system and at the same time allows for full-range 
monitoring (nodes, pods, clusters, physical resources etc.). 

The second layer concerns the automated build and 
deployment procedures of ROS packages. This is the most 
important part of the system since it is responsible for the 
orchestration of all subsystems and also for the task allocation 
and assignment. It is implemented in NodeJS and integrates a 
web server (HTTP protocol), a reverse proxy server and a 
NoSQL database (MongoDB [10]), which are installed in the 
Master Node mentioned before. The web server utilizes Docker, 
Kubernetes and MongoDB APIs. The reversed proxy server is 
used in order to publicly expose the deployed services, making 
them accessible by the robots or software. Also, a web-based UI 
is implemented in this layer, enabling interactions between users 
and the cloud infrastructure. At this layer, the programming 
environment in which the ROS package needs to get built and 
executed is automatically created. Also, the uploaded by the user 
package is parsed, in order to confirm that it fulfils the necessary 
specifications. Furthermore, an automatically generated 
communication medium (an API client library) is created for 
each ROS package using Swagger tools, thus conforming to 
OpenAPI Specifications (OAS). Swagger gives the opportunity 
to generate the necessary files that an API client consists of. 
OAS defines a standard, programming language-agnostic 
interface description for REST APIs. This client library can be 
embedded into either a robot controller or an application and 
utilize the deployed cloud services. 

 The last layer of the system is the client layer. It involves the 
users, the robots and the software that utilize the system’s 
features. Through the UI, users can upload ROS packages, adjust 
the computing resources to be used for each one (scaling), track 
the status of both building and deployment procedures, as well 
as have access to runtime logs. Also, one can search and find 
deployed ROS packages, retrieving necessary information about 
how to call the services each one contains. Finally, robots or 
software can use the generated API client libraries that the 
system provides or by employ third-party tools like cURL, in 
order to call already deployed services. 

The main concept is that a developer can upload a ROS 
package accompanied by a configuration file. This file contains 
information about the automatic build and deployment of the 
ROS package in an isolated containerized environment existing 
on the cluster. It is worth mentioning that the system does not 
support pre-compiled Docker containers, since auto-generated 
files that should be included in the same container are involved. 
Upon successful deployment, proper URLs are automatically 
generated, via which any authorized user can make HTTP calls 
in order to use a specific service of this package. Also, an 
OpenAPI specifications file is generated along with API client 
libraries towards invocation from a range of programming 
languages like C++, Python and JavaScript. The programmer 
can manage his/her deployed services through the SRCA UI in 
order to scale it up or down (assign or remove deployed 
containers), review the logs relevant to the build and/or 
deployment procedures and retrieve further information about 
the deployment (e.g. the version of the package). 

A more detailed explanation about how the system operates 
follows. Initially, the user uploads a ROS package along with a 

configuration file, written in YAML format. Figure 2 presents 
an example of a YAML file used to automatically build and 
deploy a ROS package named test, comprising two different 
functions defined in two different files. 

 This YAML file contains critical parameters, used to 
automatically build and deploy the ROS package. Τhe 
definitions and roles of the main ones follow: 

 file: a source code file containing one or more 
functions. The user has to create and provide these files 
and place them in a folder named functions in the ROS 
package directory. The files can only be developed in 
Python, as it’s currently the only supported language. 
Their structure can be really simple like the script 
presented at Figure 3. 

 function: a function the user must create in order to 
invoke one or more ROS services and get the returned 
value through the web server.  

 package: can contain apt-get, pip and npm commands, 
i.e. package managers used to download and install 
specific packages, followed by the name of the 
software the ROS package requires to get properly built 
and executed. 

 command: the appropriate command that will launch 
ROS Core and the necessary ROS nodes for the 
package to serve the contained services. This is the one 
and only command that the container will run at 
execution time.  

name: test 
version: v1 
environment: ROS 
files: 
- file_name: client.py 
   functions: 
   - name: add_two_ints 
     arguments: 
       params: 
         a: integer 
         b: integer 
    http-method: post 
    returns: string 
- file_name: testfiles.py 
   functions: 
   - name: sendmyfile 
     arguments: 
       files: 
         fa: 
       params: 
         a: integer 
     http-method: post 

returns: file 
packages: 
 apt-get: net-tools vim 
 pip: numpy 
 npm: underscore 
command: roslaunch test launch.launch 

 
Figure 2: Example of YAML file used to build and deploy package at 

SRCA 

 
 



 Upon uploading the aforementioned files in a ZIP file, the 
developer waits until the functions are deployed. Meanwhile, the 
system performs the activities presented in Figure 5. Initially, it 
performs appropriate validation checks concerning the file's 

existence and the configuration file structure and schema. The 
next step is to generate a Docker file that will be used to build 
the ROS package, along with some configuration files needed to 
get everything operating correctly inside the container. Also, a 
Web Server Gateway Interface (WSGI) is generated in which 
the above functions are binded. The system uses a Gunicorn web 
server to host and run this WSGI application combined with 
three Eventlet workers, aiming at supporting more concurrent 
HTTP requests. This web server is running inside every single 
container and it is different for each package, thus a mechanism 
to bind internal to external ports will be needed (e.g. a reverse 
proxy). In order to achieve faster and parallel building of 
packages, the system supports building these images at different 
Kubernetes Pods. 

After the successful completion of the build process, the 
system creates a Kubernetes Deployment which undertakes the 
deployment of this container at the Cluster, identified by 
username. In order to achieve that, Kubernetes Namespaces are 
used to craft a proper namespace for every different user of the 
system, making it easier to debug errors. Next, a Kubernetes 

#!/usr/bin/env python 
import sys 
import rospy 
from test.srv import * 
def add_two_ints(x, y): 
 rospy.wait_for_service('add_two_ints_srv') 
 try: 
    add_two_ints_srv = 
rospy.ServiceProxy('add_two_ints_srv', 
AddTwoInts) 
    resp1 = add_two_ints_srv(x, y) 
    return resp1.sum 
 except rospy.ServiceException, e: 

print "Service call failed: %s"%e 

 
Figure 3: Structure of a Python script containing one function 

 

 

Figure 4: The path which an HTTP Request follows at SRCA 

 

 

Figure 5: Flow chart of automatic build and deployment procedures 

 



Service is created and is used to forward the port of the Gunicorn 
Web Server existing in the container. This port is available only 
to entities belonging in the same network as the Master Node. A 
reverse proxy server has been integrated, in order to dynamically 
create routes that connect an internal port like the one exposed 
by the Kubernetes Service with an external user-friendly URL. 
This reverse proxy server is again a custom implementation 
using the NodeJS web server framework. The route that an 
HTTP request follows in the SRCA is presented in Figure 4. 

 During this procedure, the database is getting updated in 
order to store the status of this process. This NoSQL database 
consists of four collections, responsible for storing I) 
information about the users, II) the deployments created by the 
users (including the services that the specific package contains), 
III) the devices that they own and IV) user groups with different 
permissions (e.g. number of pods that are allowed to use for a 
specific deployment). 

Finally, the system cleans up any useless Docker images and 
Kubernetes Pods that have been created and informs the user that 
the functions are ready for utilization. The user can then modify 
this Deployment through the aforementioned SRCA UI. 

IV. EXPERIMENTS ON SYSTEM PERFORMANCE 

 The system was tested using a Cluster of three (3) Nodes. 
Each Node has 4GB RAM, 40GB HDD and 1 CPU core. 
Kubernetes and Docker were installed in each, in order to create 
a Kubernetes Cluster. Also, an instance of MongoDB was 
installed at the Master Node along with the NodeJS web server 
described in the previous chapter. The experiments include a 
ROS package that has only one function named add_two_ints(). 
This function takes as input arguments two numerical values and 
returns the sum of them. We concluded in using this function at 
the experiments, due to the fact that it is not a computationally 
intensive operation. In this way, we have measured the 
performance and the response time of the system, instead of the 

computational power of the current cluster’s resources. The 
reader should take into account that Kubernetes Nodes may be 
similar to a standard PC regarding the computational power, thus 
we expect that a multi-node ROS package will behave the same 
in both configurations. Different experiments we conducted are 
for 1-3 Pods and 1-3 eventlet workers for 500 simultaneously 
HTTP requests using cURL. Below, a list containing the metrics, 
as defined by cURL, is presented: 

 time_connect: The time, in seconds, from the start 
until the TCP connect to the remote host (or proxy) was 
completed. 

 time_pretransfer: The time, in seconds, from the start 
until the file transfer was just about to begin. This 
includes all pre-transfer commands and negotiations 
that are specific to the particular protocol(s) involved. 

 time_start_transfer: The time, in seconds, from the 
start until the first byte was just about to be transferred. 
This includes time_pretransfer and also the time the 
server needed to calculate the result. 

 time_total: The total time, in seconds, that the full 
operation lasted. 

 total_start_transfer: Time difference between 
time_total and time_start_transfer. 

 The diagrams in Figure 6 depict the differences between 1-3 
Pods and 3 worker processes. The results presented in Table I 
conclude that as the number of Pods increases, the mean time 
difference between time_total and time_start_transfer 
decreases. This means that the server can serve faster and 
smoother concurrent requests. Furthermore, the same 
experiments have been performed for a variable number of 
worker processes (1-3) and the results are presented in Table II. 
It is noticeable that there are combinations with less computer 
resources that perform better. e.g. using 2 Pods and 1 worker 

 

Figure 6: System performance for 500 concurrent requests 



performs better than using 2 Pods and 2-3 workers. This may 
occur due to the fact that the specific cluster is not powerful 
enough to assign without delay the requests which arrive at the 
web server to the specific workers. 

It is worth mentioning that the maximum number of worker 
processes for each web server was equal to three, as it has been 
experimentally noticed that it is optimized for the specific setup 
of the cluster. However, a feature could be added in the future 
which will enable the user to change that number. 

TABLE I. TIMES FOR 3 WORKERS AND 500 REQUESTS  

# of 

Pods 

Average Time  

connect pre 

transfer start_transfer total total - 

start_transfer 
1 1.03618 1.03636 1.43266 3.46107 2.02840 

2 1.20848 1.20860 1.54866 3.50012 1.95146 

3 1.17671 1.17688 1.51506 2.32103 0.80597 

TABLE II. TIME COMPARISON BETWEEN DIFFERENT WORKERS FOR 

500 REQUESTS 

# of Pods 
Average Time Difference Between total and start_transfer 

1 worker 2 workers 3 workers 

1 2.88665 2.65352 2.02840 

2 1.72741 2.59609 1.95146 

3 1.43738 1.58541 0.80597 
 

V. CONCLUSION / FUTURE WORK 

 The proposed SRCA architecture is based on modern and 
state-of-the-art technologies and tools, which evidently have 
large potentials to evolve and mitigate in common everyday 
procedures. SRCA is an architecture that promotes the Cloud 
Robotics concept, by allowing robotic experts to offer services 
for deployment by simple users or robots, in a structured and 
scalable way.   

Currently, Kubernetes can handle 5,000 nodes and 150,000 
pods, which makes SRCA extremely scalable. Also, using 
Kubernetes allows the proposed architecture to be deployed in 
physical cloud infrastructures like the one used for the 
experiments. In addition, using containers the way described 
above and decoupling the main components of the system 
achieve low granularity of the architecture. This makes the 
system perform smoother its operations and be more reliable. 
Furthermore, it should be clearly stated that the proposed system 
(as well as any other cloud-based service providing system) 
cannot be used for time critical operations. This means that a Pod 
cannot handle real time motion control or visual assisted 
manipulation, but functions the robot has the luxury to wait for 
their conclusion, since their response time cannot be known due 
to network delays. Several improvements can be performed as 
future work, in order to provide better Quality of Service and 
extended functionalities. 

First of all, the system should be benchmarked with realistic 
(for robotics) services such as 2D/3D path planning, object 

detection/recognition, human skeleton detection and others. 
Furthermore, ROS uses streams over TCP sockets to allow 
communication between nodes (TCPROS). There are many 
cases where a user/robot needs to stream data to services (and 
not just call them once), thus maintaining an open channel of 
communication. This can be achieved through several protocols 
over TCP like websockets, MQTT, WAMP, or any other 
bidirectional network channel. Nevertheless, all the tools used to 
implement SRCA intra-layer communication interfaces support 
TCP sockets, thus the implementation of this feature does not 
require architecturally redesign the system. 

Furthermore, upon code submission from a developer, the 
system creates a Docker image containing the entire package. 
This image is deployed on some Pods, but no communication 
means exists between them, thus each Pod executes the entire 
package separately. Nevertheless, ROS architecture allows the 
creation of more than one ROS nodes, which can communicate 
with each other. One can take advantage of Kubernetes' ability 
to create networks of Pods that can communicate with each 
other, resulting in the easier scaling of ROS Nodes with large 
workload, instead of scaling the entire package. 

Finally, a registry is used to store the Docker images, which 
are currently being exploited only during their deployment 
process. The implementation of a subsystem to enable 
reusability of existing images would be a useful addition, 
especially for saving deployment time. This could considerably 
shorten the building time of a new image, in case it has similar 
specifications to another that already exists in the registry. 
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